Answers>Maths>IB>Article

Given that w=x * e^-w use implicit differentiation to show that dw/dx=1/(e^w + x)

Given that w=xe-w use implicit differentiation to show that dw/dx = 1/(ew+x)Answer:Use product rule to simplify:dw/dx = x(de-w/dx) + e-w(dx/dx)Use chain rule to simplify even further:dw/dx = -xe-w(dw/dx) + e-wWe know from the original formula that w = xe-w. Therefore, replace:dw/dx = -w*(dw/dx) + e-wRe-arrange to isolate the derivative:(dw/dx)(1+w) = e-wdw/dx = (e-w)/(1+w)Re-arrange to achieve form asked for, knowing that x = wew from original formula given:dw/dx = 1/(ew+ wew)dw/dx = 1/(ew+x)q.e.d.

PG
Answered by Panagiota G. Maths tutor

1545 Views

See similar Maths IB tutors

Related Maths IB answers

All answers ▸

The velocity, v, of a moving body at time t is given by v = 50 - 10t. A) Find its acceleration. B) The initial displacement, s, is 40 meters. Find an expression for s in terms of t.


Differentiate implicitly with respect to x the equation x^3*y^5+3x=8y^3+1


Given h(x) = 9^x + 9 and g(x) = 10*3^x, find {x | h(x) < g(x)}.


Write down the expansion of (cosx + isinx)^3. Hence, by using De Moivre's theorem, find cos3x in terms of powers of cosx.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences