Answers>Maths>IB>Article

Given that w=x * e^-w use implicit differentiation to show that dw/dx=1/(e^w + x)

Given that w=xe-w use implicit differentiation to show that dw/dx = 1/(ew+x)Answer:Use product rule to simplify:dw/dx = x(de-w/dx) + e-w(dx/dx)Use chain rule to simplify even further:dw/dx = -xe-w(dw/dx) + e-wWe know from the original formula that w = xe-w. Therefore, replace:dw/dx = -w*(dw/dx) + e-wRe-arrange to isolate the derivative:(dw/dx)(1+w) = e-wdw/dx = (e-w)/(1+w)Re-arrange to achieve form asked for, knowing that x = wew from original formula given:dw/dx = 1/(ew+ wew)dw/dx = 1/(ew+x)q.e.d.

PG
Answered by Panagiota G. Maths tutor

1499 Views

See similar Maths IB tutors

Related Maths IB answers

All answers ▸

IB exam question: Let p(x)=2x^5+x^4–26x^3–13x^2+72x+36, x∈R. For the polynomial equation p (x) = 0 , state (i) the sum of the roots; (ii) the product of the roots.


What are the key elements to include in your Math assignment?


Consider the arithmetic sequence 5,7,9,11, …. Derive a formula for (i) the nth term and (ii) the sum to n terms. (iii) Hence find the sum of the first 20 terms.


Given the function y=f(x), where f(x)=(e^x-e^(-x))/2, find its inverse f'(x).


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences