Answers>Maths>IB>Article

Given that w=x * e^-w use implicit differentiation to show that dw/dx=1/(e^w + x)

Given that w=xe-w use implicit differentiation to show that dw/dx = 1/(ew+x)Answer:Use product rule to simplify:dw/dx = x(de-w/dx) + e-w(dx/dx)Use chain rule to simplify even further:dw/dx = -xe-w(dw/dx) + e-wWe know from the original formula that w = xe-w. Therefore, replace:dw/dx = -w*(dw/dx) + e-wRe-arrange to isolate the derivative:(dw/dx)(1+w) = e-wdw/dx = (e-w)/(1+w)Re-arrange to achieve form asked for, knowing that x = wew from original formula given:dw/dx = 1/(ew+ wew)dw/dx = 1/(ew+x)q.e.d.

PG
Answered by Panagiota G. Maths tutor

1593 Views

See similar Maths IB tutors

Related Maths IB answers

All answers ▸

Let (x + 3) be a factor of the polynomial P(x) = x^3 + ax^2 - 7x + 6. Find a and the other two factors.


The quadratic function f(x) = p + qx – x^2 has a maximum value of 5 when x = 3. Find the value of p and the value of q.


In an arithmetic sequence, the first term is 2, and the fourth term is 14. a) Find the common difference, d. b) Calculate the sum of the first 14 terms, S14.


Find the differential of y=arcsinx


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning