Answers>Maths>IB>Article

Differentiate, from first principles, y=x^2

According to first principles, the differential is found as the limit as h->0 of:[f(x+h)-f(x)] / hif we set our f to x^2, then we find that this expression becomes (x^2+2hx+h^2 - x^2)/hWhich simplifies to 2x+h. As h->0, this leaves us with 2x, which is the derivative of x^2

ME
Answered by Milo E. Maths tutor

2176 Views

See similar Maths IB tutors

Related Maths IB answers

All answers ▸

Differentiate x^3 + y^4 = 34 using implicit differentiation


Let Sn be the sum of the first n terms of the arithmetic series 2 + 4 + 6 + ... i) Find S4


If f(x)=(x^3−2x)^5 , find f'(x).


Two functions, y1 & y2, are given by y1=x^2+16x+4; y2=2(3x+2). Find analytically the volume of the solid created by revolving the area between the two curves by 2pi radians around the x-axis. N.B. y2>y1 on the interval between the points of intersection.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning