Solve the simultaneous equations: 1) 6a+b=11 , 2) 5a-2b=19

To solve, first create a common factor for b by multiplying the 1st equation by 2 to get: 12a+2b=22.Now, add the two equations together to get: (12a+5a) + (2b-2b) = (22+19)which is 17a=41 , when simplified.Solving this we have a=41/17.Now that we have a, we can substitute this value back into one of the original equations and solve it for b.Hence, using equation 1: 6(41/17)+b=11So we get , b = 11 - 6(41/17) b = -59/17You can now check the answers by substituting both a and b into the equations.

JT
Answered by James T. Maths tutor

4143 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

How do I know how many solutions a quadratic equation has?


What is mathematics and why should I study it?


There are 60 students on a school trip. Each student is either one of, vegan, gluten free, or neither. 27 students were girls. 9 girls were gluten free. 21 students were vegan. 8 boys were vegan. 4 boys were gluten free. How many boys had no dietary's?


f(x) = 5x − 12. (i) Calculate f(4). (ii) Find f( x + 1). Give your answer in the form ax + b .


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning