Solve the simultaneous equations: 1) 6a+b=11 , 2) 5a-2b=19

To solve, first create a common factor for b by multiplying the 1st equation by 2 to get: 12a+2b=22.Now, add the two equations together to get: (12a+5a) + (2b-2b) = (22+19)which is 17a=41 , when simplified.Solving this we have a=41/17.Now that we have a, we can substitute this value back into one of the original equations and solve it for b.Hence, using equation 1: 6(41/17)+b=11So we get , b = 11 - 6(41/17) b = -59/17You can now check the answers by substituting both a and b into the equations.

JT
Answered by James T. Maths tutor

3590 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Make n the subject of the formula: m = 5n - 21


What is red shift?


HIGHER TIER a) Factorise the following equation into two bracket form: 2x^2-5x-12. b)2x^2-5x-12=0. Solve this equation to find the values of x, using your answer to part a). BONUS c) Sketch the function y=2x^2-5x-12, showing any x intercepts


Find the roots of the equation: x^2-2x-3=0


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences