Prove the square of an odd number is always 1 more than a multiple of 4

We will start by representing an odd number using algebra. Let n be a integer, i.e. 1,2,3,4,etc. then we can define an odd number as (2n)-1. This is because if a number is of the form 2n it must be even, since it can be divided by 2 and still be a whole number. So, if we take 1 away from the even number, i.e. 2n-1, then it must be odd.
Now we will square our odd number. (2n-1)2 = 4n2-4n+1 =4(n2-n)+1.The first term here 4(n2-n) is clearly a multiple of 4 since we have a 4 outside the brackets. We still have the 1 left over, so we have that the square of an odd number is always 1 more than a multiple of 4.

TD
Answered by Tutor285427 D. Maths tutor

33622 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

How do you factorise fully 3 a^3 b + 12 a^2 b^2 + 9 a^5 b^3?


factorise and simplify (x^2+4x+4)/(3x^2+15x+18)


John bought 7 bags of cement and 3 bags of gravel with the total weight of 215kgs. Shona bought 5 bags of cement and 4 bags of gravel with the total weight of 200kgs. How much does 1 bag of cement weigh and how much does 1 bag of gravel weigh?


A scalene triangle ABC has side lengths AB=6cm, BC=4cm, and AC=x cm. The angle A, opposite BC, is 40 degrees and the angle B, opposite AC, is 50 degrees. State the sine rule and use it to find the value of x to 3 s.f.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning