Prove the square of an odd number is always 1 more than a multiple of 4

We will start by representing an odd number using algebra. Let n be a integer, i.e. 1,2,3,4,etc. then we can define an odd number as (2n)-1. This is because if a number is of the form 2n it must be even, since it can be divided by 2 and still be a whole number. So, if we take 1 away from the even number, i.e. 2n-1, then it must be odd.
Now we will square our odd number. (2n-1)2 = 4n2-4n+1 =4(n2-n)+1.The first term here 4(n2-n) is clearly a multiple of 4 since we have a 4 outside the brackets. We still have the 1 left over, so we have that the square of an odd number is always 1 more than a multiple of 4.

TD
Answered by Tutor285427 D. Maths tutor

34666 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

What is the general equation for a straight graph line and what does each part represent?


Work out the value of x and y in the parallelogram ABCD.


3n+2 <= 14 and 6n/(n^2+5) > 1 Find possible values of N


The rectangles A and B have perimeters of 94cm and 56cm as shown below (insert diagram). Rectangle A: base = 2x cm, height = 3y cm. Rectangle B: base = (x+6)cm, height = (y+4)cm. Use an algebraic method to calculate the area of each rectangle. (8 marks)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning