Find an equation of the curve with parametric equations x=3sin(A) and y=4cos(A), in the form bx^2+cy^2=d.

x2=9sin2(A) and y2=16cos2(A)Since sin2(A)+cos2(A)=116x2+9y2=16 x 916x2+9y2=144

PV
Answered by Pranav V. Maths tutor

3491 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Solve the equation |3x + 4| = |3x - 11|


Find the derivative of f(x)=x^3 sin(x)


Sketch the graphs of y = f(x), y = g(x) and find the point(s) where f and g intersect.


Given that 2cos(x+50)°=sin(x+40)° show tan x° = tan 40°/3


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences