Differentiate y = (3x − 2)^4

We recognise that this is in the form of a function within a function, i.e u= 3x - 2 is within the u^4 function, therefore here we will use the chan rule to differentiate the equation. 

The chain rule states that dy/dx = dy/du * du/dx.

Here let u = 3x -2, then du/dx = 3. Similarly, y=u^4 so dy/du = 4u^3. Therefore dy/dx = 3 * 4u^3 = 12u^3.

Finally, we substitute u = 3x - 2 into the equation. This therefore gives us, dy/dx = 12(3x - 2)^3.

WI
Answered by Wajiha I. Maths tutor

16638 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How do you integrate y = 4x^3 - 5/x^2?


Differentiate y = x^3 + 2x^2 + 4x + 3


Calculate the distance of the centre of mass from AB and ALIH of the uniform lamina.


If 1/(x(a-x)) is equivalent to B(1/x + 1/(a-x)), Express 'B' in terms of 'a'


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning