Differentiate y = (3x − 2)^4

We recognise that this is in the form of a function within a function, i.e u= 3x - 2 is within the u^4 function, therefore here we will use the chan rule to differentiate the equation. 

The chain rule states that dy/dx = dy/du * du/dx.

Here let u = 3x -2, then du/dx = 3. Similarly, y=u^4 so dy/du = 4u^3. Therefore dy/dx = 3 * 4u^3 = 12u^3.

Finally, we substitute u = 3x - 2 into the equation. This therefore gives us, dy/dx = 12(3x - 2)^3.

WI
Answered by Wajiha I. Maths tutor

15681 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Integrate 2x^3 -4x +5


A curve is defined for x>0 as y = 9 - 6x^2 - 12x^4 . a) Find dy/dx. b) Hence find the coordinates of any stationary points on the curve and classify them.


How do you differentiate a function comprised of two functions multiplied together?


Find an equation of the circle with centre C(5, -3) that passes through the point A(-2, 1) in the form (x-a)^2 + (y-b)^2 = k


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences