Differentiate y = (3x − 2)^4

We recognise that this is in the form of a function within a function, i.e u= 3x - 2 is within the u^4 function, therefore here we will use the chan rule to differentiate the equation. 

The chain rule states that dy/dx = dy/du * du/dx.

Here let u = 3x -2, then du/dx = 3. Similarly, y=u^4 so dy/du = 4u^3. Therefore dy/dx = 3 * 4u^3 = 12u^3.

Finally, we substitute u = 3x - 2 into the equation. This therefore gives us, dy/dx = 12(3x - 2)^3.

WI
Answered by Wajiha I. Maths tutor

16314 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How do I know which trigonometric identity to use in any given situation?


Find the integral of (cosx)*(sinx)^2 with respect to x


Factorise x^3+3x^2-x-3


Find the set of values for which: x^2 - 3x - 18 > 0


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning