Find the coordinates of the minimum point on the curve: y = x^2 - x - 2

Start with the given equation from the question and differentiate it with respect to x to give you:dy/dx = 2x - 1The value of this gives you the slope of the curve and we know that the minimum point has a slope of zero. So by setting the differentiated equation to zero and rearranging the equation, the value of x can be found:2x - 1 = 02x = 1x = 0.5This value of x is the x coordinate of the minimum, to then get the corresponding y value, sub this value of x into the equation given in the question:y = x2 - x - 2y = 0.52 - 0.5 - 2 = -2.25So the coordinates of the minimum are (0.5,-2.25)

AR
Answered by Alex R. Maths tutor

4959 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Integrate (x^2)(e^x) with respect to x


Points A and B have coordinates (–2, 1) and (3, 4) respectively. Find the equation of the perpendicular bisector of AB and show that it may be written as 5x +3 y = 10.


find the integral of ((3x-2)/(6x^2-8x+3)) with respect to x between x=2 and x=1. (hint use substitution u=denominator)


What is the turning point on the curve f(x) = 2x^2 - 2x + 4


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning