Find the coordinates of the minimum point on the curve: y = x^2 - x - 2

Start with the given equation from the question and differentiate it with respect to x to give you:dy/dx = 2x - 1The value of this gives you the slope of the curve and we know that the minimum point has a slope of zero. So by setting the differentiated equation to zero and rearranging the equation, the value of x can be found:2x - 1 = 02x = 1x = 0.5This value of x is the x coordinate of the minimum, to then get the corresponding y value, sub this value of x into the equation given in the question:y = x2 - x - 2y = 0.52 - 0.5 - 2 = -2.25So the coordinates of the minimum are (0.5,-2.25)

AR
Answered by Alex R. Maths tutor

4630 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How do you find the normal to a curve at a given co-ordinate?


A curve has parametric equations x = 1- cos(t), y = sin(t)sin(2t). Find dy/dx.


How many solutions are there to the equation sin x = a, if 0<a<1 and 0<x<pi


Find the equation of the tangent to the curve y = (2x -3)^3 at the point (1, - 1), giving your answer in the form y = mx + c.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences