Find the coordinates of the minimum point on the curve: y = x^2 - x - 2

Start with the given equation from the question and differentiate it with respect to x to give you:dy/dx = 2x - 1The value of this gives you the slope of the curve and we know that the minimum point has a slope of zero. So by setting the differentiated equation to zero and rearranging the equation, the value of x can be found:2x - 1 = 02x = 1x = 0.5This value of x is the x coordinate of the minimum, to then get the corresponding y value, sub this value of x into the equation given in the question:y = x2 - x - 2y = 0.52 - 0.5 - 2 = -2.25So the coordinates of the minimum are (0.5,-2.25)

AR
Answered by Alex R. Maths tutor

4768 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Solve 2sec^2(x) = 3 + tan(x) for 0 < x <pi/2


How do you differentiate y=x^x?


Integrate 2x^3 -4x +5


Find the area contained under the curve y =3x^2 - x^3 between 0 and 3


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning