Find the positive solution to the equation (x^2+9x+18)/(x^2-9)=10

If we first factorise the top and the bottom of the equation we can see that the top is equal to (x+6)(x+3) and the bottom is (x-3)(x+3). This means we can divide the top and bottom by (x+3) giving us a result of x=-3 which is negative so is not the required solution. However, we are then left with (x+6)/(x-3)=10 which can be rearranged to give (x+6)=10(x-3) and then expanded to give us x+6=10x-30. Rearranging again we get to 9x=36 and then dividing through by 9 we get x=4 which is a positive solution, as required.

JR
Answered by Joseph R. Maths tutor

3137 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Solve the following simultaneous equations to find x and y.


A square has sides of length x cm. The length of a rectangle is equal to the perimeter of this square. The perimeter of this rectangle is 14x cm. Find an expression for the width of this rectangle. Give your answer in terms of x.


Calculate the value of both x and y using the following 2 equations: 3x - 2y = 12 (1) and x - y = 3 (2)


64% of an audience are female. Work out the ratio females : males Give your answer in its simplest form.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning