What is the natural logarithm?

The standard rule for integration is: integrate kx^n dx = kx^(n+1)/(n+1). However, if we try and integrate 1/x in this manner we get, x^0/0, i.e. 1/0, which is infinity. However, if we look at a graph of 1/x, then between two points there is clearly a well defined area, so it must be possible to integrate this. The natural logarithm is a function that we use to do this, whereby ln(a) is the integral of 1/x between 1 and a. It is a logarithmic function with base 'e', where e takes the value of about 2.718, and e^x is known as the exponential function; i.e. it increases at an ever increasing rate. The exponential function is the inverse of the natural logarithm function. 

EH
Answered by Eden H. Maths tutor

4804 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

In this question, take 'log' to mean 'log base 5'. Solve the equation log(x^2-5)-log(x) = 2*log(2)


If, f(x) = 8x^3 + 1 / x^3 . Find f''(x).


Find the first three terms in the expansion of (4-x)^(-1/2) in ascending powers of x.


The second and fourth term of a geometric series is 100 and 225 respectively. Find the common ratio and first term of the series. Round your answer to 2 d.p if necessary


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning