What is the natural logarithm?

The standard rule for integration is: integrate kx^n dx = kx^(n+1)/(n+1). However, if we try and integrate 1/x in this manner we get, x^0/0, i.e. 1/0, which is infinity. However, if we look at a graph of 1/x, then between two points there is clearly a well defined area, so it must be possible to integrate this. The natural logarithm is a function that we use to do this, whereby ln(a) is the integral of 1/x between 1 and a. It is a logarithmic function with base 'e', where e takes the value of about 2.718, and e^x is known as the exponential function; i.e. it increases at an ever increasing rate. The exponential function is the inverse of the natural logarithm function. 

EH
Answered by Eden H. Maths tutor

4192 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the derivative, dy/dx, of y = 8xcos(3x).


What are the different steps involved in Proof by Induction?


How do you sketch the curve y=(x^2 - 4)(x+3), marking on turning points and values at which it crosses the x axis


Given y = 3x^(1/2) - 6x + 4, x > 0. 1) Find the integral of y with respect to x, simplifying each term. 2) Differentiate the equation for y with respect to x.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences