For a cuboid, the longest side is two units more than the shortest side, and the middle length side is one unit longer than the shortest side. The total surface area of the cuboid is 52 units². (a) Construct an equation to calculate the surface area.

First label all the sides with letters:longest side = amiddle length side = bshortest side = cNow convert the question into equation form: "the longest side is two units more than the shortest side" becomes, a = 2 + c (1)"middle length side is one unit longer than the shortest side" becomes, b = 1 + c (2)"The total surface area of the cuboid is 52 units² " becomes, 2ab + 2ac + 2bc = 52 (3)Substitute expressions (1) and (2) into (3) to get2(2+c)(1+c) + 2c(2+c) + 2c(1+c) = 52Expand out the brackets:2(2+3c+c^2) + 4c + 2c^2 + 2c + 2c^2 = 52which becomes:4 + 6c + 2c^2 + 6c + 4c^2 = 52collect all the terms together:6c^2 + 12c - 48 = 0Divide by 6 to simplify equation:c^2 + 2c - 8 = 0factorise this equation into brackets to find c, by finding two numbers that multiply together to make -8, and add together to make 2... i.e. 4 and -2,(c + 4)(c-2) = 0Therefore, c = -4, or c=2. Since c must be positive (a negative side length would make no physical sense) c must be 2. We can then subsitute this back into (1) and (2) to find values for a and b, a = 4b = 3and then double check that the surface area is 52. 

EH
Answered by Eden H. Maths tutor

8802 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

A linear sequence starts, a + 2b, a + 6b, a + 10b …….. …….. The 2nd term has value 8. The 5th term has value 44. Work out the values of a and b


Write 180g as a fraction of 3Kg. Give your answer in its simplest form.


Solve the equation: x^2 +8x + 12 = 0


Line A passes through point Q(2,3). Line B is parallel to line A and has the equation 2y-3x=4. What is the equation of line A?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning