The normal to the curve C when x=1 intersects the curve at point P. If C is given by f(x)=2x^2+5x-3, find the coordinates of P

Differentiate C:dy/dx=4x+5When x=1dy/dx=4(1)+5dy/dx=9This is gradient of tangent.Gradient of normal=-1/9When x=1, y=4y-4=-1/9(x-1)y=(-1/9)x+(37/9)(-1/9)x+(37/9)=2x^2+5x-30=2x^2+(46/9)x-(64/9)x=1 or x=-32/9P at x=-32/9y=365/81P(-32/9, 365/81)

HC
Answered by Hannah C. Maths tutor

3316 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Sketch, on a pair of axes, the curve with equation y = 6 - |3x+4| , indicating the coordinates where the curve crosses the axes, then solve the equation x = 6 - |3x+4|


If cos(x)= 1/3 and x is acute, then find tan(x).


f(x) = 2x3 – 5x2 + ax + 18 where a is a constant. Given that (x – 3) is a factor of f(x), (a) show that a = – 9 (2) (b) factorise f(x) completely. (4) Given that g(y) = 2(33y ) – 5(32y ) – 9(3y ) + 18 (c) find the values of y that satisfy g(y) = 0, givi


Using methods of substitution solve the following simultaneous equations: y - 2x - 1 = 0 and 4x^2 + y^2 - 25 = 0


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences