A curve is given by the equation y=x^3-11x^2+28x; find the coordinates of the points where the curve touches the x-axis.

Since the equation has a cubic term, we can expect the curve to have certain properties: it should have three points where the graph touches the x-axis, two turning points, of which one should be a minimum and one should be a maximumTo start we will find the point where the curve touches the x-axis and to do that we have to simplify the equation of the curve by factorising it, since every term has an x value, we can factorise the whole equation by x, giving us x(x^2-11x+28). Now we have a quadratic equation which we can factorise by sight or by using the quadratic equation, to give us y=(x)(x-4)(x-7), this tells us that when the curve touches the x-axis (when y=0) x = 0, 4, 7, therefore the coordinates are (0,0), (4,0) and (7,0)

LH
Answered by Lui H. Maths tutor

3149 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

A shop sells only Apples, Bananas and Mangos. The ratio of Apples to Bananas is 5:11. The next shopper will choose one piece of fruit at random. The probability that they buy a Mango is 0.2. What is the probability that they buy an Apple?


Explain the difference between the domain and range of a function.


Solve x^2+10x+5=0 using completing the square.


Find the equation of the straight line passing through the points (7,5) and (8, 2)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning