A curve is given by the equation y=x^3-11x^2+28x; find the coordinates of the points where the curve touches the x-axis.

Since the equation has a cubic term, we can expect the curve to have certain properties: it should have three points where the graph touches the x-axis, two turning points, of which one should be a minimum and one should be a maximumTo start we will find the point where the curve touches the x-axis and to do that we have to simplify the equation of the curve by factorising it, since every term has an x value, we can factorise the whole equation by x, giving us x(x^2-11x+28). Now we have a quadratic equation which we can factorise by sight or by using the quadratic equation, to give us y=(x)(x-4)(x-7), this tells us that when the curve touches the x-axis (when y=0) x = 0, 4, 7, therefore the coordinates are (0,0), (4,0) and (7,0)

LH
Answered by Lui H. Maths tutor

3192 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Write 120 as a product of its prime factor


A solution to the equation 2x^2-3x-17=0 lies between 2&3 use method of trail and improvement to find the solution


How do I solve simultaneous equations when one is quadratic? For example 3x^2 -2y = 19, 6x-y-14=0


Expand (x+2)(x-3)(x+4)^2


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning