A curve is given by the equation y=x^3-11x^2+28x; find the coordinates of the points where the curve touches the x-axis.

Since the equation has a cubic term, we can expect the curve to have certain properties: it should have three points where the graph touches the x-axis, two turning points, of which one should be a minimum and one should be a maximumTo start we will find the point where the curve touches the x-axis and to do that we have to simplify the equation of the curve by factorising it, since every term has an x value, we can factorise the whole equation by x, giving us x(x^2-11x+28). Now we have a quadratic equation which we can factorise by sight or by using the quadratic equation, to give us y=(x)(x-4)(x-7), this tells us that when the curve touches the x-axis (when y=0) x = 0, 4, 7, therefore the coordinates are (0,0), (4,0) and (7,0)

LH
Answered by Lui H. Maths tutor

3236 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Solve the simultaneous equations: y=5-x and y=x+1.


Three identical isosceles triangles are joined together to make a trapezium. Each triangle has base b cm and height h cm. Work out an expression, in terms of b and h for the area of the trapezium.


Given the two equations [1](3x + 4y = 23) and [2](2x + 3y = 16), find the values of x and y


Express 56 as the product of its prime factors


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning