Find the gradient at the point (0, ln 2) on the curve with equation e^2y = 5 − e^−x . [4]

Figure out what skills are being tested: implicit differentiation and exponentials and logarithms.e2y = 5 - e-x2e2y(dy/dx) = e-x(dy/dx) = e-x/ 2e2yAt (0, ln2) (dy/dx) = e0 / 2e2ln2 e2ln2 = 4 as 2ln2 = ln(22) and eln(x)= x (dy/dx) = 1 / 8.

TC
Answered by Theodore C. Maths tutor

3795 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

If f(x) = sin(2x)/(x^2) find f'(x)


Find the gradient of the curve y=2sinx/x^3 at the point x=


How does the product rule for differentiation work


A curve is described by f(x) = x^2 + 2x. A second curve is described by g(x) = x^2 -5x + 7. Find the point (s) where both curves intersect.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences