Find the minimum value of the function, f(x)= x^2 + 5x + 2, where x belongs to the set of Real numbers

We first differentiate f(x), and we get f'(x)=2x + 5. We then set this equal to 0 and then solve for x. We get that xmin= -2.5. We check whether this was indeed a minimum, by calculating the second derivative, f''(xmin)= 2. Since f''(x) > 0 we know that xmin is indeed a (local) minimum. Then to find the minimum value of f(x), we substitute the value of x back to the equation and get the minimum value of f(x) is -4.25 ((-2.5)^2 + 5(-2.5) + 2 = -4.25))

PP
Answered by Pavlos P. Maths tutor

3584 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

What is the chain rule?


What are volumes of revolution and how are they calculated?


Find the equation of the normal to the curve at the point (1, -1 ): 10yx^2 + 6x - 2y + 3 = x^3


Let C : x^2-4x+2k be a parabola, with vertex m. By taking derivatives or otherwise discuss, as k varies, the coordinates of m and, accordingly, the number of solutions of the equation x^2-4x+2k=0. Illustrate your work with graphs


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning