Given y = x(3x+ 5)^3. Find dy/dx.

First we notice that y can be written as the product of two functions of x, u = x and v = (3x + 5)^3. This means we can use the product rule to differentiate which is dy/dx = uv' + vu'. We can plug our functions u and v into this formula, using the chain rule to differentiate v to arrive at dy/dx = (3x + 5)^3 + 9x(3x + 5)^2. Next we need to simplify by taking out a common factor to get (3x + 5)^2 ((3x +5) + 9x)). Which we can further simplify to (3x + 5)^2 (12x + 5) which is the final answer.

MS
Answered by Michael S. Maths tutor

4336 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A curve has equation y = x^3 - 6x^2 - 15x. The curve has a stationary point M where x = -1. Find the x-coordinate of the other stationary point on the curve.


Given the circumference x^2 - 2x + y^2 = 3, find the position of the center P and the value of the Radius. Then find the intercepts with the y axis and the tangent to the circumference at the positive y intercept.


(19x - 2)/((5 - x)(1 + 6x)) can be expressed as A/(5-x) + B/(1+6x) where A and B are integers. Find A and B


Find the stationary point of the graph of y = 2x + 5 + 27x^(-2)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning