How do you solve these simultaneous equations? 4x + 5y = 8; 2x + 3y = 5

By elimination:(eq1) 4x + 5y = 8(eq2) 2x + 3y = 5By eye you can see that 2x multiplied by 2 is 4x.If we multiply the whole of (eq2) by 2 we get:(eq2.1) 4x + 6y = 10(eq1) 4x + 5y = 8If we subtract the whole of (eq1) from the whole of (eq2.1) component by component, we get:(6y-5y) = (10-8)y = 2.Then if we substitute this value of y back in to either (eq1) or (eq2) (we will use (eq1)):4x + 52 = 84x + 10 = 8 (then subtract 10 from either side)4x = -2x = -2/4 = -0.5By substitution:Rearrange either (eq1) or (eq2) with either x or y as the subject. We will use (eq1) and rearrange with x as the subject:4x + 5y = 8 (subtract 5y from both sides)4x = 8 - 5y (divide both sides by 4)x = (8 - 5y)/4Substitute this expression into the other simultaneous equation, in this case (eq2):2x + 3y = 5 (substitute above expression for x)2 (8 - 5y)/4 + 3y = 5 (multiply both sides by 4)2* (8 - 5y) + 12y = 20 (multiply out the brackets)16 - 10y + 12y = 20 (collect y terms)2y + 16 = 20 (subtract 16 from both sides)2y = 4 (divide both sides by 2)y = 2Substitute this value of y into either (eq1) or (eq2) as shown in the first technique, elimination, to obtain x = -0.5.

WL
Answered by Wendy L. Maths tutor

5412 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Solve the simultaneous equations y = x + 3 and y = x^2 + 3x


An item costs £65 but requires an additional 20% VAT to be added. How much change will you get from £100


Solve the two simultaneous equations. 1. x^2 + y^2 = 25, 2. y - 3x = 13


Adam buys 4kg of sweets and pays £10 for them. Adam puts all of the sweers into bags with 250g in each bag. He sells the bags for 70p each. All the bags of sweets are sold, what is the percentage profit?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning