A curve has the equation 6x^(3/2) + 5y^2 = 2 (a) By differentiating implicitly, find dy/dx in terms of x and y. (b) Hence, find the gradient of the curve at the point (4, 3).

(a) To differentiate implicitly, differentiate x’s as normal and differentiate y’s with respect to y before multiplying by dy/dx. Therefore the differentiating the curve gives
9x^(1/2) + 10y*(dy/dx) = 0
which can be rearranged to give dy/dx = -9x^(1/2) / 10y
(b) at (4, 3) dy/dx = -94^(1/2) / 103
m^(1/2) is equivalent to √m so
dy/dx = -92 / 103 = -3 / 5

ML
Answered by Matthew L. Maths tutor

3507 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A curve is described by the equation x^3 - 4y^2 = 12xy. a) Find the points on the curve where x = -8. b) Find the gradient at these points.


differentiate y = 4x^3(12e^-4x) with respect to x


Write down two reasons for using statistical models


Find the shortest distance between the line L: x=1+t, y=1+2t, z=1-t and the point A: (2,3,4)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning