If a curve has equation y=(4/3)x^3-2x^2-24x+16, find dy/dx and find the coordinates of the turning points.

y=(4/3)x3-2x2-24x+16Step 1: Understand the questiondy/dx means differentiate the function of y with respect to xturning points are where the gradient of the function changes and will be found by setting dy/dx = 0 [note dy/dx = 0 is not always a turning point]Step 2: Solve the problemdy/dx = 4x2-4x-24simplifies to: dy/dx = x2-x-6now to find turning points: set dy/dx=0 such that x2-x-6=0 which factorises out as (x+2)(x-3)=0Thus, the roots to the equation are x=-2 and x=3Then to find coordinates, sub the x values back into equation to find their corresponding y valuesThus, final solution is (-2, 136/3) and (3,-38)Step 3: Reflect and consolidate learningUnderstand what you have solved - you have found local maxima and minima pointsPotential further qs: is a stationary point necessarily a turning point?, how can you show that these points are turning points?

JP
Answered by Johann P. Maths tutor

3255 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Make h the subject of h-36=(3h+18)/i


I’ve been taught two methods for solving pairs of simultaneous equations. When should I use which?


In a tennis club, there are twice as many male members as female members. 1/3 of the males wear hats when they play. 1/4 of the females wear hats when they play. 66 members wear hats. How many members does the club have?


Solve for x and y, with x and y satisfying the equations 3x+2y=36and 5x+4y=64


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning