Differentiate y = xe^(2x).

We want to find dy/dx. We find this using the product rule by setting the functions f(x) = x and g(x) = e2x. With these functions, we can write the equation as y = f(x)g(x), so by applying the product rule, we have that dy/dx = f'(x)g(x) + f(x)g'(x). To calculate g'(x), we use the chain rule.If we write h(x) = 2x, then g(x) = e2x = eh(x). So by using the chain rule and the fact that ex differentiates to itself, we have that g'(x) = h'(x)eh(x) = 2e2x. Therefore by going back to the equation which we found by the product rule, dy/dx = f'(x)g(x) + f(x)g'(x) = (1)(e2x) + (x)(2e2x) = e2x + 2xe2x. We can factorise this to get dy/dx = (1 + 2x)e2x.

ML
Answered by Matthew L. Maths tutor

29582 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

1. (a) Find the sum of all the integers between 1 and 1000 which are divisible by 7. (b) Hence, or otherwise, evaluate the sum of (7r+2) from r=1 to r=142


How do I find the maxima and minima of a function?


The equation x^2 + 3px + p = 0, where p is a non-zero constant, has equal roots. Find the value of p.


How do you find the first order derivative of sin(x) and cos(x) functions?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning