given y=(1+x)^2, find dy/dx

There are two ways in which this we can do this,

The first is explanding the brackets to get 1+2x+x2 and differentiating to get 2+2x.

The second way is using the chain rule, let u=1+x such that y=u2 and differentiate both equations to get du/dx=1 and dy/du=2u. (du/dx)(dy/du)  = dy/dx. plug theses together and we get dy/dx = 2u. To finish off we will need to have the answer in its original form of in terms of x's so plug in u=1+x to gain 2+2x

As you may see both ways generated the same answer. It doesn't matter which way you do alsong as you remember the rules, I will personally do both to double check my answer.

SG
Answered by Sam G. Maths tutor

8234 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

What is the exact answer to (1^3 + 2^3 + 3^3)^(0.5) ?


Use integration by parts to integrate the following function: x.sin(7x) dx


Using trigonometric identities, show that (cos(x) + sin(x))^2=1+sin(2x)


What is dy/dx when y=ln(6x)?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning