given y=(1+x)^2, find dy/dx

There are two ways in which this we can do this,

The first is explanding the brackets to get 1+2x+x2 and differentiating to get 2+2x.

The second way is using the chain rule, let u=1+x such that y=u2 and differentiate both equations to get du/dx=1 and dy/du=2u. (du/dx)(dy/du)  = dy/dx. plug theses together and we get dy/dx = 2u. To finish off we will need to have the answer in its original form of in terms of x's so plug in u=1+x to gain 2+2x

As you may see both ways generated the same answer. It doesn't matter which way you do alsong as you remember the rules, I will personally do both to double check my answer.

SG
Answered by Sam G. Maths tutor

8501 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

If the functions f and g are defined: f: x--> x/5 + 4 g : x--> 30x + 10. what is x, if fg(x) = x. ?? What would fgf(x) = x^2 be??


We are given y=(x^2)+3x-5. Find the derivative of y in terms of x.


How do you know how many roots a quadratic equation has?


What is the gradient of the quadratic function y=3x²?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning