Prove that, if 1 + 3x^2 + x^3 < (1+x)^3, then x>0

(1+x)^3 = x^3 + 3x^2 + 3x + 1 (Can be calculated straight away by binomial method or by multiplying brackets individually)
if (1+x)^3 > 1 + 3x^2 + x^3then: x^3 + 3x^2 + 3x + 1 > 1 + 3x^2 + x^3 3x > 0 x > 0

VT
Answered by Vigneswaran T. Maths tutor

15958 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How do you find the point of intersection of two vector lines?


Solve the equation |3x +4a| = 5a where a is a positive constant.


Solve the equation 3^(5x-2)=4^(6-x), and show that the solution can be written in the form log10(a)/log10(b).


How do I differentiate sin^2(x)?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning