Prove that, if 1 + 3x^2 + x^3 < (1+x)^3, then x>0

(1+x)^3 = x^3 + 3x^2 + 3x + 1 (Can be calculated straight away by binomial method or by multiplying brackets individually)
if (1+x)^3 > 1 + 3x^2 + x^3then: x^3 + 3x^2 + 3x + 1 > 1 + 3x^2 + x^3 3x > 0 x > 0

VT
Answered by Vigneswaran T. Maths tutor

14980 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Express root(125^x)/5^(2x-1) in terms of 5^a where a is an expression in terms of x.


Find the gradient of the tangent to the curve with the equation y = (3x^4 - 18)/x at the point where x = 3


A curve with equation y=f(x) passes through the point (1, 4/3). Given that f'(x) = x^3 + 2*x^0.5 + 8, find f(x).


Compute the integral of f(x)=x^3/x^4+1


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences