Prove that, if 1 + 3x^2 + x^3 < (1+x)^3, then x>0

(1+x)^3 = x^3 + 3x^2 + 3x + 1 (Can be calculated straight away by binomial method or by multiplying brackets individually)
if (1+x)^3 > 1 + 3x^2 + x^3then: x^3 + 3x^2 + 3x + 1 > 1 + 3x^2 + x^3 3x > 0 x > 0

VT
Answered by Vigneswaran T. Maths tutor

15937 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Simplify (7+sqrt(5))/(sqrt(5)-1), leaving the answer in the form a+b*sqrt(5)


Sketch the line y=x^2-4x+3. Be sure to clearly show all the points where the line crosses the coordinate axis and the stationary points


Differentiate(dx) xy+4y-13


Prove that 2cot2x+tanx=cotx


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning