Prove that, if 1 + 3x^2 + x^3 < (1+x)^3, then x>0

(1+x)^3 = x^3 + 3x^2 + 3x + 1 (Can be calculated straight away by binomial method or by multiplying brackets individually)
if (1+x)^3 > 1 + 3x^2 + x^3then: x^3 + 3x^2 + 3x + 1 > 1 + 3x^2 + x^3 3x > 0 x > 0

VT
Answered by Vigneswaran T. Maths tutor

15218 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A curve has equation y = 4x + 1/(x^2) find dy/dx.


Integrate ((x^3)*lnx)dx


Given that y=(4x+1)^3*sin(2x) , find dy/dx


A function is defined by f(x)= e^(x^2+4), all real x. Find inverse of f(x) and its domain.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences