Prove that, if 1 + 3x^2 + x^3 < (1+x)^3, then x>0

(1+x)^3 = x^3 + 3x^2 + 3x + 1 (Can be calculated straight away by binomial method or by multiplying brackets individually)
if (1+x)^3 > 1 + 3x^2 + x^3then: x^3 + 3x^2 + 3x + 1 > 1 + 3x^2 + x^3 3x > 0 x > 0

VT
Answered by Vigneswaran T. Maths tutor

15283 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Differentiate arctan(x) with respect to x. Leave your answer in terms of x


Integrate tan(x)^2 with respect to x


What is the exact answer to (1^3 + 2^3 + 3^3)^(0.5) ?


The radius of a circular disc is increasing at a constant rate of 0.003cm/s. Find the rate at which the area is increasing when the radius is 20cm.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning