Find the tangent of the following curve, y=xe^x, at x=1 expressing it in the form y=mx+c?

Firstly, we calculate the y-value when x=1, namely y=e. Then we need to find the gradient of this curve at x=1, which can be determined by taking the derivative of y and then valuate it at x=1. So dy/dx=xe^x+e^x=(x+1)e^x, at x=1 dy/dx=2e. Using the equation of a line given by y-y_0=m(x-x_0), where m is the gradient of the line (namely m=2e) and (x_0,y_0) is the coordinate that is given to us (namely x_0=1 and y_0=e), we obtain that y-e=2e(x-1), hence y=2ex-e is the tangent of this curve at x=1.

BS
Answered by Bruno S. Maths tutor

18181 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Given y=2x^4-1+x^1/2, solve dy/dx


How would I solve the equation 25^x = 5^(4x+1)?


If y=3x^3e^x; find dy/dx?


What is the coefficient of x^2 in the expansion of (5+2x)^0.5?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning