Show that the determinant of the 3x3 matrix (2 1 1 / 2 1 7 / 6 3 5) is equal to zero.

To find the determinant of this matrix, we calculate: 2(1x5-3x7)-1(2x5-6x7)-1(2x3-1x6) = 10 - 42 - 10 + 42 -6 + 6 = 0.So the determinant of this 3x3 matrix is equal to zero.

LG
Answered by LAUREN G. Maths tutor

3914 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

The volume of liquid in a container is given by v=(3h^2+4)^(3/2)-8, find dV/dh when h = 0.6


Find values of x in the interval 0<x<360 degrees. For which 5sin^2(x) + 5 sin(x) +4 cos^2(x)=0


Solve the simultaneous equations y = x + 3, y^2 - x^2 + 3 = -6x


Use logarithms to solve the equation 2^(n-3) = 18000, giving your answer correct to 3 significant figures.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning