Show that the determinant of the 3x3 matrix (2 1 1 / 2 1 7 / 6 3 5) is equal to zero.

To find the determinant of this matrix, we calculate: 2(1x5-3x7)-1(2x5-6x7)-1(2x3-1x6) = 10 - 42 - 10 + 42 -6 + 6 = 0.So the determinant of this 3x3 matrix is equal to zero.

LG
Answered by LAUREN G. Maths tutor

4179 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

In a geometric series, the first and fourth terms are 2048 and 256 respectively. Calculate r, the common ratio of the terms. The sum of the first n terms is 4092. Calculate the value of n.


a) Solve the following equation by completing the square: x^(2)+ 6x + 1= 0. b) Solve the following equation by factorisation: x^(2) - 4x - 5 = 0 c) Solve the following quadratic inequality: x^(2) - 4x - 5 < 0 (hint use your answer to part b)


Let f(x)=x^3-6x+3. i)Differentiate f(x) to find dy/dx. ii) Given that dy/dx = 12, find the value of x.


Integral of sin^x dx


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning