Show that the determinant of the 3x3 matrix (2 1 1 / 2 1 7 / 6 3 5) is equal to zero.

To find the determinant of this matrix, we calculate: 2(1x5-3x7)-1(2x5-6x7)-1(2x3-1x6) = 10 - 42 - 10 + 42 -6 + 6 = 0.So the determinant of this 3x3 matrix is equal to zero.

LG
Answered by LAUREN G. Maths tutor

3813 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Consider the closed curve between 0 <= theta < 2pi given by r(theta) = 6 + alpha sin theta, where alpha is some real constant strictly between 0 and 6. The area in this closed curve is 97pi/2. Calculate the value of alpha.


What does it mean when I get a negative value when I do a definite integral?


Integrate 4/x^2


Intergrate 8x^3 + 6x^(1/2) -5 with respect to x


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences