Show that the determinant of the 3x3 matrix (2 1 1 / 2 1 7 / 6 3 5) is equal to zero.

To find the determinant of this matrix, we calculate: 2(1x5-3x7)-1(2x5-6x7)-1(2x3-1x6) = 10 - 42 - 10 + 42 -6 + 6 = 0.So the determinant of this 3x3 matrix is equal to zero.

LG
Answered by LAUREN G. Maths tutor

3748 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A curve has parametric equations -> x = 2cos(2t), y = 6sin(t). Find the gradient of the curve at t = π/3.


The point A lies on the curve with equation y=x^0.5. The tangent to this curve at A is parallel to the line 3y-2x=1 . Find an equation of this tangent at A. [5 marks]


How would you differentiate ln(x^2+3x+5)?


Let p(x) = 30 x^3 -7 x^2 - 7 x + 2. Prove that (2x + 1) is a factor of p(x) and factorise p(x) completely.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences