Differentiate the function f(x) = x*sin(x)

This function is the product of the two functions 'x' and 'sin(x)'. Therefore we use the product rule, which says that the differential of a product of two functions is the differential of the first multiplied by the second, plus the differential of the second multiplied by the first:

d/dx(x*sin(x)) = (d/dx(x))sin(x) + x(d/dx(sin(x)))

                     = 1sin(x) + xcos(x)

                     = sin(x) + x*cos(x)

DB
Answered by Dylan B. Maths tutor

5819 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Rationalise the complex fraction: (8 + 6i)/(6 - 2i)


using the substitution u=6-x^2 integrate (x^3)/(6-x^2)^1/2 with respect to x, between 1 and 2


How can I understand eigenvalues and eigenvectors?


A curve C has the equation y=5sin3x + 2cos3x, find the equation of the tangent to the curve at the point (0,2)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning