Differentiate the function f(x) = x*sin(x)

This function is the product of the two functions 'x' and 'sin(x)'. Therefore we use the product rule, which says that the differential of a product of two functions is the differential of the first multiplied by the second, plus the differential of the second multiplied by the first:

d/dx(x*sin(x)) = (d/dx(x))sin(x) + x(d/dx(sin(x)))

                     = 1sin(x) + xcos(x)

                     = sin(x) + x*cos(x)

DB
Answered by Dylan B. Maths tutor

5697 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the gradient of a straight line with the points P(5,3) and Q(8,12)


How to do the product rule for differentiation


Points P and Q are situated at coordinates (5,2) and (-7,8) respectively. Find a) The coordinates of the midpoint M of the line PQ [2 marks] b) The equation of the normal of the line PQ passing through the midpoint M [3 marks]


The number of bacteria present in a culture at time t hours is modeled by the continuous variable N and the relationship N = 2000e^kt, where k is a constant. Given that when t = 3, N = 18 000, find (a) the value of k to 3 significant figures


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning