Prove the identity: sin^2(x)+cos^2(x) = 1

This is one of the most commonly used A level identities which can be proved using only GCSE maths!

Firstly, take an arbitrary right angle triangle with Hypotenuse h, and angle x between h and the adjacent side. (Diagram recommended)

Label the triangle in terms of h and x using simple SOHCAHTOA:

Hypotenuse = h

Adjacent = hcos(x)

Opposite = hsin(x)

Now, using everyone’s favourite theorem (Pythagorean):

h^2 = h^2cos^2(x)+h^2sin^2(x)

Factoring out h^2 on the right hand side:

h^2 = h^2(cos^2(x)+sin^2(x))

Dividing both sides by h^2 to make it explicit:

1 = cos^2(x)+sin^2(x)

SO
Answered by Sean O. Maths tutor

4676 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Consider the functions f(x) = −x^3 + 2x^2 + 3x and g(x) = −x^3 + 3x^2 − x + 3. (a) Find df/dx (x) and hence show that f(x) has turning points at when x = 2 /3 ± √ 13/ 3 . [5] (b) Find the points where f(x) and g(x) intersect. [4]


How do I use product rule when differentiating?


Find the derivative of the following expression: y=x^3+2x^2+6x+5.


The random variable J has a Poisson distribution with mean 4. Find P(J>2)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning