Find the exact solution to: ln(x) + ln(7) = ln(21)

Log rules:

log(a) + log(b) = log(ab)

so, in this case, we must find x such that 7x = 21

thus x = 3

similarly, log(a) - log(b) = log(a/b)

rearranging the original equation we get:

ln(x) = ln(21) - ln(7)

so x = 21/7 = 3

BP
Answered by Bryan P. Maths tutor

7125 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A curve has the equation 6x^(3/2) + 5y^2 = 2 (a) By differentiating implicitly, find dy/dx in terms of x and y. (b) Hence, find the gradient of the curve at the point (4, 3).


Solve the simultaneous equation x+y=11(1), x^2+y^2=61 (2)


When using the trapezium rule to approximate area underneath a curve between 2 limits, what is the effect of increasing the number of strips used?


Write tan(3x) in terms of tan(x). Hence show that the roots of t^3 - 3t^2 - 3t + 1 = 0 are tan(pi/12), tan(5pi/12) and tan(3pi/4)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning