Find the integral of xcos(2x) with respect to x

You can see that this question is asking you to do integration by parts. Remember that the integral of uv' is equal to uv - the integral of u'v. You want to find a u that gets easier when you differentiate it and a v' that's possible to integrate directly and doesn't get messier when you integrate it. In this case let u = x and v' = cos(2x). u' = 1 and v = sin(2x)/2. The integral of xcos(2x) = xsin(2x)/2 - the integral of sin(2x)/2Hence the integral of xcos(2x) = xsin(2x)/2 + cos(2x)/4 + c.

KJ
Answered by Krystian J. Maths tutor

9337 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Can you prove to me why cos^2(X) + sin^2(X) = 1?


How would I use implicit differentiation to differentiate functions such as: y=tan^-1(ax^2+b) in the form of dy/dx=.....?


Find the derivative of f(x)=x^3 sin(x)


y=x^2 +4x-12, Find the Range (co-domain) when the domain of x is (1) -6 to 2 inclusive (2) the set of real numbers, R.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences