Find the integral of xcos(2x) with respect to x

You can see that this question is asking you to do integration by parts. Remember that the integral of uv' is equal to uv - the integral of u'v. You want to find a u that gets easier when you differentiate it and a v' that's possible to integrate directly and doesn't get messier when you integrate it. In this case let u = x and v' = cos(2x). u' = 1 and v = sin(2x)/2. The integral of xcos(2x) = xsin(2x)/2 - the integral of sin(2x)/2Hence the integral of xcos(2x) = xsin(2x)/2 + cos(2x)/4 + c.

KJ
Answered by Krystian J. Maths tutor

9003 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the stationary points of the graph x^3 + y^3 = 3xy +35


A curve has the equation, 6x^2 +3xy−y^2 +6=0 and passes through the point A (-5, 10). Find the equation of the normal to the curve at A.


Statistics: What is the difference between a Binomial and Poisson distribution?


if f(x) = 4x^2 - 16ln(x-1) - 10, find f'(x) and hence solve the equation f'(x)=0.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences