differentiate x^3(1+x)^5 with respect for x

First we have to use the product rule, remember that if we have h(x)=f(x)g(x) then h'(x)=f'(x)g(x)+f(x)g'(x).So h'(x) = x^3D[(x+1)^5]+(x+1)^5D[x^3]Completing the unfinished derivatives,h'(x) = x^3[5(x+1)^4]+(x+1)^5[3x^2]Simplifies to.h'(x) = 5x^3(x+1)^4+3x^2(x+1)^5remember that we do the (x+1)^5 in the standard way. 

RL
Answered by Robert L. Maths tutor

4285 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

express 63 as a product of its prime factors


In 2017 the number of teachers in a school was 20. The number of teachers doubles each year. If in 2019 3/5 of the teachers are female how many male teachers are there in 2019?


how do you solve a linear equation where there are unknowns on each side e.g. 4(k + 7) = 12k + 4


When solving two simultaneous equations, when should you use the method of elimination and when would you use the method of substitution?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning