differentiate x^3(1+x)^5 with respect for x

First we have to use the product rule, remember that if we have h(x)=f(x)g(x) then h'(x)=f'(x)g(x)+f(x)g'(x).So h'(x) = x^3D[(x+1)^5]+(x+1)^5D[x^3]Completing the unfinished derivatives,h'(x) = x^3[5(x+1)^4]+(x+1)^5[3x^2]Simplifies to.h'(x) = 5x^3(x+1)^4+3x^2(x+1)^5remember that we do the (x+1)^5 in the standard way. 

RL
Answered by Robert L. Maths tutor

4380 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

What is the relationship between the lengths of a right angle triangle


Work out the value of (√12 + √3) squared. Assume square roots are positive.


Simplify and solve the following equation: x^2 -8x +15=0


Simplify the surd sqrt(48)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning