differentiate x^3(1+x)^5 with respect for x

First we have to use the product rule, remember that if we have h(x)=f(x)g(x) then h'(x)=f'(x)g(x)+f(x)g'(x).So h'(x) = x^3D[(x+1)^5]+(x+1)^5D[x^3]Completing the unfinished derivatives,h'(x) = x^3[5(x+1)^4]+(x+1)^5[3x^2]Simplifies to.h'(x) = 5x^3(x+1)^4+3x^2(x+1)^5remember that we do the (x+1)^5 in the standard way. 

RL
Answered by Robert L. Maths tutor

4083 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

A different pattern is made using 20 straight lines and 16 arcs. The straight lines and arcs are made of metal. 20 straight lines cost £12 and the cost of one straight line: cost of one arc = 2:3. Work out the total cost of metal in the pattern.


f(x) = 6x³ + 13x² - 4. Use the factor theorem to show that (x+2) is a factor of f(x)


Expand and simplify: (2x+3)(x-8)


Solve the two simulatneous equations x^2+y^2=18 and x-y=3


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences