553 views

How do I factorise a quadratic equation?

Firstly, make sure you agree that a quadratic equation is an equation of the form y = ax2 + bx + c where a,b,c are (real) constants (a is not 0), and x is the variable. (Note: the equation has an "x squared" term).

An example would be: y = x2 + x - 6.

We want to factorise this equation so we can find the values of x for which y = 0 (the points where the curve crosses the x-axis).

Secondly, we need to be aware that factorising a quadratic mens expressing the equations as a product of two brackets which each contain an term.

So, in the form ax2 + bx + c = (dx + e)(fx + g)

Working with our example, y = x2 + x - 6, we first direct our attention to the constant term c, in this case c = -6.

If we expand the brackets, we get ax2 + bx + c =(dx+e)(fx + g) = dfx2 + (ef +dg)x + eg.

We should already be able to see that for our example where the coefficient of x2 is 1 that d,f = 1 so now we have a simpler equation:

(x+e)(x+g) = x2 + (e + g)x + eg. (1.1)

We can then use eg = c = -6, our constant term ie. the constant terms in the brackets multiple to make our origanal constant term.

To find e,h, we think of pairs of numbers which multiply to give -6 :

-1 x 6 // -2 x 3 // -3 x 2 // -6 x 1

So how do we decide which pair of number will give the correct equation?

Well we could test each pair and multiply out the brackets until we get the right equation, but this could take some time if we have more than four options, so instead we'll take a shortcut:

See which pairs ​add to give the coefficient of x

From (1.1), we can equate e + g = b.

-1 + 6 = 5 // -2 + 3 = 1 // -3 + 2 = -1 // -6 + 1 = -5

In our example, b = 1, so we can tell that our constants, e,h are -2,+3 and our answer is: y = (x - 2)(x + 3).

Check! (x - 2)(x + 3) = x2 - 2x + 3x - 6 = x2 + x - 6

as required!

1 year ago

Answered by Gemma, a GCSE Maths tutor with MyTutor

Still stuck? Get one-to-one help from a personally interviewed subject specialist

525 SUBJECT SPECIALISTS

£20 /hr

Xanthe W.

Degree: Biological Sciences with a Year in Industry/Research (Bachelors) - Imperial College London University

Subjects offered:Maths, Chemistry+ 1 more

Maths
Chemistry
Biology

£18 /hr

Luke B.

Degree: Mathematics (Masters) - Sheffield University

Subjects offered:Maths, Further Mathematics + 3 more

Maths
Further Mathematics
.STEP.
.MAT.
-Personal Statements-

“I am a fun, engaging and qualified tutor. I'd love to help you with whatever you need, giving you the support you need to be the best you can be!”

£18 /hr

Dan W.

Degree: Economics and Accounting (Bachelors) - Bristol University

Subjects offered:Maths, Economics

Maths
Economics

“I achieved top grades whilst juggling cricket at a high level. I’ve tutored for Young Einstein Tuition & been a Peer Mentor to those facing personal issues”

Gemma L.

Currently unavailable: for regular students

Degree: Mathematics (Bachelors) - Bath University

Subjects offered:Maths, Physics+ 1 more

Maths
Physics
Further Mathematics

“Hi everyone, I'm Gemma. At the moment I am studying (hard) for a Mathematics degree at Bath University. I heave always had a deep love for all things Maths related since I started learning the subject at school. I hope to be able to s...”

MyTutor guarantee

You may also like...

Other GCSE Maths questions

blah blah blah

Solve the equation (2x+3)/(x-4)-(2x-8)/(2x+1)=1 and give the answer to 2 decimal places

Solve the following simultaneous equations: 2a-5b=11, 3a+2b=7

Bob lives 2km away from Alice and the school is 1km away from Bob. Alice sets off to meet Bob at 8am and she meets him at 8:15 and they carry on walking at the same pace. School starts at 8:20. Do they get to school on time? How early/late are they?

We use cookies to improve your site experience. By continuing to use this website, we'll assume that you're OK with this.