Find the solutions to x^3+4x^2+x-5=1

These cubic equations are usually fairly simple once the method is known, firstly make the right hand side (RHS) equal to zero by subtracting 1 from both sides:

x^3+4x^2+x-6=0

Now the next step is a quick bit of trial and error, one of the roots to this equation is a factor of 6 so this leaves us with ±1, ±2, ±3, ±6. So plug these into the equation until you get a result which equals zero.

After trialling we find that +1 is a root or in factorised form (x-1). This leads us to our next step: 

What quadratic multiplied by our factorised root gives us our original equation?

(x-1)(ax^2+bx+c)=x^3+4x^2+x-6

Well the coefficient of x^3 is 1 so our value of 'a' must also be 1 (If the coeffiecient of x^3 was 5 then 'a' would also be 5)

(x-1)(x^2+bx+c)=x^3+4x^2+x-6

The constant term 'c' must equal -6 when multiplied by -1 and so c= (-6/-1) =6

(x-1)(x^2+bx+6)=x^3+4x^2+x-6

Now we need to find b...

The coefficient of x in the problem was 1, so we need to find a value of 'b' so that when the brackets are expanded there is 1x:

 1x=bx*(-1)+x*6 so b=5

This gives us:

(x-1)(x^2+5x+6)=x^3+4x^2+x-6

(x-1)(x^2+5x+6)=0

Factorise the quadratic either by inspection or by using the quadratic formula:

(x-1)(x+2)(x+3)=0

so the roots are x=1,-2,-3

LH
Answered by Luke H. Maths tutor

4475 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A particle A rests on a smooth inclined plane, it is connected to a particle B by a light inextensible string that is passed over a fixed smooth pulley at the top of the plane. B hangs freely. Find the acceleration of the system and tension in the string.


Differentiate the function f(x) = (x^2 - 1)^3


Write √80 in the form c√5, where c is a positive integer.


Water is flowing into a rightcircular cone at the rate r (volume of water per unit time). The cone has radius a, altitude b and the vertex or "tip" is pointing downwards. Find the rate at which the surface is rising when the depth of the water is y.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences