A ball is released on a smooth ramp at a distance of 5 metres from the ground. Calculate its speed when it reaches the bottom of the ramp.

The ramp is smooth, so the effects of friction can be ignored. Therefore, the potential energy lost by the ball is equivalent to the kinetic energy gained by the ball. The formula for kinetic energy is 1/2 * m * v^2 and the formula for gravitational potential energy is m * g * h.Therefore, equate these and find that 1/2 * v^2 = g * h, after cancelling out m. Solving for v gets a speed of 9.90 m/s.

CB
Answered by Cameron B. Maths tutor

4776 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Differentiate f(x) = 14*(x^2)*(e^(x^2))


The equation f(x) =x^3 + 3x is drawn on a graph between x = 0 and x = 2. The graph is then rotated around the x axis by 2π to form a solid. What is the volume of this solid?


Derive Law of Cosines using Pythagorean Theorem


Make x the subject of the equation: 5x+1 = 2-4x


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning