What is a vector and how do I calculate the 'modulus' of a vector?

A vector is something that has both magnitude and direction. An example of a vector is velocity because it has magnitude and direction. However, speed is not a vector. This is because it only has magnitude. A vector is represented by OA (with an arrow above it going from the O to the A) or a. In 3-D there are 3 main unit vectors: i, j, k. Where:
i = (1, 0, 0) , j = (0, 1, 0) and k = (0, 0, 1). All 3-D vectors are represented in terms of these three unit vectors. (Unit vectors all have a length of 1). So we can say the general form of a vector, for some vector called a, is: a = x+ yj + zk = (x , y, z) where x, y and z are numbers. Let us try to visualise vector a
In order to find vector a we must move x units in the x (or i) direction, y units in the y (or j) direction and then z units in the z (or k) direction. The magnitude of a vector is known as its modulus (or more simply, length). The modulus of vector a = ( x+ y2 + z2)1/2

AS
Answered by Anya S. Maths tutor

15901 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Write x^2 + 6x - 10 in the form ((x+a)^2)+b?


How do you measure the gradient of a straight line joining two points?


How do I convert the following, 0.089, into standard form?


Solve for the coordinates where lines A and B intersect. A: y=x+4 B: y=0.5x+3.5


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences