Describe the changes at the cell membrane of a neuron during an action potential.

At rest the membrane potential is -70mV.

This is due to the  Na+/K+ pump, which actively transports 3 Na+ ions out of the cell for every 2 K+ ions in.

Therefore there is a net negative charge inside the cell.

Four stages:

Depolarization; Repolarization;Hyperpolarization; Afterhyperpolarization.

Depolarization - triggered by another neuron. The membrane becomes more leaky to Na+, so Na+ diffuses into the cell down an electrochemical gradient. This makes the potential difference across the membrane become more positive. Eventually a Threshold potential of -55mV is reached, which activates the voltage-gated Na+ channels. These open and allow a lot of Na+ to enter the neuron.

Repolarization - at +30mV the voltage-gated Na+ channels close and the voltage-gated K+ channels open. K+ diffuses out of the cell through the open channels, causing the membrane potential to become more negative again.

Hyperpolarization - or the 'overshoot' is when the membrane potential becomes more negative than the resting potential, due to prolonged K+ efflux.

Afterhyperpolarization - restoring the resting membrane potential. At this point the membrane potential is too negative AND the ions (Na+ and K+) are on the wrong side of the membrane. The Na+/K+ pump works to restore the ions to their correct sides and a new action potential cannot be generated.

AN
Answered by Alex N. Biology tutor

11062 Views

See similar Biology A Level tutors

Related Biology A Level answers

All answers ▸

Please can we go over the process of spermatogenesis?


How does the oxygen in the air reach respiring cells in humans?


How can two brown-eyed parents produce a blue-eyed offspring?


Discuss the possible effects that mutation can have on the structure and function of a protein (3 marks)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning