Describe the development and propagation of an action potential in response to a stimulus (6 marks)

1.     stimulus excites membrane so Na+ channels open, membrane becomes more permeable to Na+ so Na+ diffuse into neurone down electrochemical gradient. Inside of neuron becomes less -ve 2.     Depolarisation: if potential difference reaches threshold (c55mV) more Na+ channels open, more Na+ diffuses into neurone 3.      Repolarisation: at +30mV Na+ channels close and K+ channels open. Membrane is more permeable to K+ so K+ diffuses out of neuron down its concentration gradient. This pushes the membrane back to resting potential4.     Hyperpolarisation: K+ channels close too slowly so overshoot, too much K+ leaves the neuron and it becomes more negative than resting potential 5.     Resting potential: ion channels reset, sodium potassium pump returns membrane to resting potential (-70mV) by pumping Na+ out and K+ in.  

SW
Answered by Simmy W. Biology tutor

2736 Views

See similar Biology A Level tutors

Related Biology A Level answers

All answers ▸

If fetal haemoglobin is so good at binding oxygen, why aren't we adapted to keep it until adulthood?


What makes DNA molecules so stable?


Describe the pathway of oxygen getting from the air into the blood in the human body


Explain why someone who has a high blood pressure is at a significantly higher risk of developing CVD


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning