How do I differentiate f(x) = cos(x)/x?

To answer this question you need to use the quotient rule. dy/dx = (vu' - uv')/v2.

U = cos(x) which differentiates to -sin(x) so u'= -sin(x)

v = x so v' = 1

Therefore, dy/dx = ( -xsin(x) - cos(x) ) / x2

EH
Answered by Ewan H. Maths tutor

11666 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

write the vector equation of a line passing through (1,-1,2) and (2,2,2).


How to differentiate using the Product Rule


Integrate xcos(x)


Express the equation cosecθ(3 cos 2θ+7)+11=0 in the form asin^2(θ) + bsin(θ) + c = 0, where a, b and c are constants.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning