Find dy/dx when y=(3x-1)^10

We have to use the chain rule in this instance to find the differentiated value y=(3x-1)^10 suppose y=u^10 thus, dy/du = 10u^9 secondly: u=3x-1 du/dx=3 the chain rule suggests that dy/dx = du/dx *dy/du so that du cancels out Therefore, dy/dx = 10(3x-1)^9 * (3)Simplified, dy/dx = 30(3x-1)^9

NK
Answered by Nimita K. Maths tutor

3540 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Given that 2log2(x+15) -log2(x) = 6, show that x^2-34x+225=0


How do I use numerical methods to find the root of the equation F(x) = 0?


A curve is defined by the parametric equations x=(t-1)^3, y=3t-8/(t^2), t is not equal to zero. Find dy/dx in terms of t.


How do we use the Chain-rule when differentiating?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences