Find dy/dx when y=(3x-1)^10

We have to use the chain rule in this instance to find the differentiated value y=(3x-1)^10 suppose y=u^10 thus, dy/du = 10u^9 secondly: u=3x-1 du/dx=3 the chain rule suggests that dy/dx = du/dx *dy/du so that du cancels out Therefore, dy/dx = 10(3x-1)^9 * (3)Simplified, dy/dx = 30(3x-1)^9

NK
Answered by Nimita K. Maths tutor

3719 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A curve has equation y = 7 - 2x^5. a) Find dy/dx. b) Find an equation for the tangent to the curve at the point where x=1.


Use logarithms to solve the equation 2^(5x) = 3^(2x+1) , giving the answer correct to 3 significant figures


How to "study" A-level Maths, not just learn?


Express (16x+78)/(2x^2+25x+63) as two fractions


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning