Use integration by parts to find the integral of xsinx, with respect to x

The integration by parts rule looks like this:

∫ u * v' dx = u * v - ∫ ( v * u' ) dx

Hence in this example, we want to make our u = x and v' = sinx

So we now need to work out what u' and v are:

u' = 1 which is the easier of the two; to work out v, we should integrate v' = sinx, this will give us v = -cosx

Hence if we now subsititute these into the equations, we will find that:

∫ xsinx dx = -xcosx - ∫ (-cosx) dx

= -xcosx - (-sinx) + C (where C is the constant of integration)

= sinx - xcosx + C

Toby S. GCSE Maths tutor, A Level Maths tutor

7 months ago

Answered by Toby, an A Level Maths tutor with MyTutor

Still stuck? Get one-to-one help from a personally interviewed subject specialist


Mary T. A Level Maths tutor, GCSE Maths tutor
View profile
£20 /hr

Mary T.

Degree: Mathematics (Masters) - Durham University

Subjects offered: Maths


“About me: I am currently studying maths in my first year at Durham University. Not only do I have a love for my subject but also for teaching it. In my last year of sixth form I set up a school wide tutoring system which helped many ...”

Chloe W. GCSE Maths tutor, A Level Maths tutor, 11 Plus Maths tutor, ...
View profile
£22 /hr

Chloe W.

Degree: Mathematics (Bachelors) - Bristol University

Subjects offered: Maths, Further Mathematics

Further Mathematics

“About Me:I'm Chloe and I'm a 2nd year maths student at Bristol university. I've always enjoyed working with numbers and I hope that I can encourage others to love working with them too!I've tutored both of my siblings through their...”

Oliver W. A Level Chemistry tutor, GCSE Chemistry tutor, A Level Math...
View profile
£22 /hr

Oliver W.

Degree: Physical Natural Sciences (Chemistry) (Masters) - Cambridge University

Subjects offered: Maths, Chemistry


“Second year chemist, from the University of Cambridge, with several years experience tutoring in Chemistry and Core Mathematics.”

About the author

Toby S. GCSE Maths tutor, A Level Maths tutor
View profile

Toby S.

Currently unavailable: for regular students

Degree: Mathematics (Bachelors) - Leeds University

Subjects offered: Maths


“Hello, my name is Toby.  I am a second year Mathematician at the University of Leeds, I am averaging a First Class degree at the moment and would love to be able to help out with whatever you need a hand with, GCSE and A-Level maths is...”

MyTutor guarantee

You may also like...

Posts by Toby

Differentiate y = (6x-13)^3 with respect to x

Solve this quadractic equation: x^2 - 8x + 15 = 0

Use integration by parts to find the integral of xsinx, with respect to x

Other A Level Maths questions

Using Integration by Parts, find the indefinite integral of ln(x), and hence show that the integral of ln(x) between 2 and 4 is ln(a) - b where a and b are to be found

The variable x=t^2 and the variable y=2t. What is dy/dx in terms of t?

M1: A stationary rock is dropped from a height of 30m above the ground. Calculate the time taken to reach the ground and its velocity as it hits the floor.

Show that the integral of tan(x) is ln|sec(x)| + C where C is a constant.

View A Level Maths tutors


We use cookies to improve our service. By continuing to use this website, we'll assume that you're OK with this. Dismiss