Use integration by parts to find the integral of xsinx, with respect to x

The integration by parts rule looks like this:

∫ u * v' dx = u * v - ∫ ( v * u' ) dx

Hence in this example, we want to make our u = x and v' = sinx

So we now need to work out what u' and v are:

u' = 1 which is the easier of the two; to work out v, we should integrate v' = sinx, this will give us v = -cosx

Hence if we now subsititute these into the equations, we will find that:

∫ xsinx dx = -xcosx - ∫ (-cosx) dx

= -xcosx - (-sinx) + C (where C is the constant of integration)

= sinx - xcosx + C

TS
Answered by Toby S. Maths tutor

58159 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Given that Y=(x+3)(x+5); find dy/dx


Show that (x-2) is a factor of 3x^3 -8x^2 +3x+2


Solve x^4+2x^2-3=0


What is the gradient of the function f(x) = 2x^2 + 3x - 7 at the point where x = -2?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning