Find the intersection point of the line 2y=x+3 with the ellipse y^2+2x^2=3

The first step is to rearrange for x: we have x=2y-3now we can plug this into the equation of the ellipse: y^2+2(2y-3)^2=39y^2-24y+15 = 0we can use the quadratic formula to solve this equation:y = (24+-sqrt(24^2-4915))/2*9y = (24+-6)/18y= 5/3, 1Next we need to find the corresponding values of x which can be done by plugging the values of y into the expression we found for xat y=5/3 we have x = 1/3at y = 1 we have x = -1so the points of intersection are (1/3,5/3) and (-1,1)

AB
Answered by Amit B. Maths tutor

3188 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Given that y = 4x^5 - 5/(x^2) , x=/=0 , find a)dy/dx b)indefinite integral of y


Express 6sin(2x)+5cos(x) in the form Rsin(x+a) (0degrees<x<90degrees)


Find the area R under the curve when f(x)=xcos(x) between the limits x=0 and x=2


The element of a cone has length L. For what height H (with respect to L) will the volume of the cone be the largest?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning