Find the intersection point of the line 2y=x+3 with the ellipse y^2+2x^2=3

The first step is to rearrange for x: we have x=2y-3now we can plug this into the equation of the ellipse: y^2+2(2y-3)^2=39y^2-24y+15 = 0we can use the quadratic formula to solve this equation:y = (24+-sqrt(24^2-4915))/2*9y = (24+-6)/18y= 5/3, 1Next we need to find the corresponding values of x which can be done by plugging the values of y into the expression we found for xat y=5/3 we have x = 1/3at y = 1 we have x = -1so the points of intersection are (1/3,5/3) and (-1,1)

AB
Answered by Amit B. Maths tutor

3072 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Core 1 question: Draw the graph "y = 12 - x - x^2"


Find the area under the curve of y=1/(3x-2)^0.5 between the limits x=1 and x=2 and the line y=0


What does it mean when I get a negative value when I do a definite integral?


solve 3 cos (2y )- 5 cos( y)+ 2 =0 where 0<y<360 degrees


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning