Find the intersection point of the line 2y=x+3 with the ellipse y^2+2x^2=3

The first step is to rearrange for x: we have x=2y-3now we can plug this into the equation of the ellipse: y^2+2(2y-3)^2=39y^2-24y+15 = 0we can use the quadratic formula to solve this equation:y = (24+-sqrt(24^2-4915))/2*9y = (24+-6)/18y= 5/3, 1Next we need to find the corresponding values of x which can be done by plugging the values of y into the expression we found for xat y=5/3 we have x = 1/3at y = 1 we have x = -1so the points of intersection are (1/3,5/3) and (-1,1)

AB
Answered by Amit B. Maths tutor

2950 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

What is the integral of x^x?


Solve the inequality x^2 – 5x – 14 > 0.


Evaluate the following integral: (x^4 - x^2 +2)/(x^2(x-1)) dx


Find the gradient of y^2 +2xln(y) = x^2 at the point (1,1)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences