What is the second derivative used for?

First of all, "second derivative", d2y/dx2, is what you get when you differentiate the first derivative (dy/dx).

The second derivative can be used as an easier way of determining the stationary points of a curve.

A stationary point on a curve can be a maximum point, a minimum point or a point of inflection. Those occur when dy/dx = 0. Once you have established where there is a stationary point, the type of stationary point (maximum, minimum or point of inflection) can be determined using the second derivative.

Thus,

If d2y/dx2 (second derivative of y in terms of x)  is positive, then it is a minimum point

If d2y/dxis negative, then it is a maximum point

If d2y/dx2 is zero, then it could be a maximum, minimum or point of inflection.

If d2y/dxis 0, you must test the values of dy/dx (first derivative) either side of the stationary point, as before in the stationary points section.

If dy/dx is possitive before and negative after the stationary point then the last is a maximum. 

If dy/dx is negative before and possitive after the stationary point then the last is a minimum. 

KT
Answered by KONSTANTINOS T. Maths tutor

33869 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

The point A lies on the curve with equation y = x^(1/2). The tangent to this curve at A is parallel to the line 3y-2x=1. Find an equation of this tangent at A. (PP JUNE 2015 AQA)  


Finding the tangent of an equation using implicit differentiation


Integrate with respect to x [x^2]


Integrate 3 sin(x) + cos(2x)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences