What is the second derivative used for?

First of all, "second derivative", d2y/dx2, is what you get when you differentiate the first derivative (dy/dx).

The second derivative can be used as an easier way of determining the stationary points of a curve.

A stationary point on a curve can be a maximum point, a minimum point or a point of inflection. Those occur when dy/dx = 0. Once you have established where there is a stationary point, the type of stationary point (maximum, minimum or point of inflection) can be determined using the second derivative.

Thus,

If d2y/dx2 (second derivative of y in terms of x)  is positive, then it is a minimum point

If d2y/dxis negative, then it is a maximum point

If d2y/dx2 is zero, then it could be a maximum, minimum or point of inflection.

If d2y/dxis 0, you must test the values of dy/dx (first derivative) either side of the stationary point, as before in the stationary points section.

If dy/dx is possitive before and negative after the stationary point then the last is a maximum. 

If dy/dx is negative before and possitive after the stationary point then the last is a minimum. 

KT
Answered by KONSTANTINOS T. Maths tutor

43347 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Differentiate e^x^2


Solve the simultaneous equations: y = x - 2 and y^2 + x^2 = 10


Prove that sin(x)+sin(y)=2sin((x+y)/2)cos((x-y)/2)


Solve the equation 3sin^2(x) + sin(x) + 8 = 9cos^2(x), -180<X<180. Then find smallest positive solution of 3sin^2(2O-30) + sin(2O-30) + 8 = 9cos^2(2O-30).


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning