Find the nature of the turning points of the graph given by the equation x^4 +(8/3)*x^3 -2x^2 -8x +177 (6 marks)

(1 mark) Differentiate equation in the question: 4x3+8x2-4x-8(1 mark) Equate this to zero: (x-1)(x+1)(x+2)=0(1 mark) Find turning points (roots of above equation): x=1,-1,-2(1 mark) Differentiate again: 12x2+16x-4(2 marks) Evaluate the twice differentiated equation at each turning point to determine their nature: x=1: minimum ; x=-1: maximum ; x=-2: minimum

EB
Answered by Elizabeth B. Maths tutor

3327 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Integral between 0 and pi/2 of cos(x)sin^2(x)


Solve the following equation, give the answer/answers as coordinates. y=3x^2 , y=2x+5.


How do you find the angle between two lines in three dimensional vector space given two points on line 1 and the vector equation of line 2


A 1kg mass is launched from the ground into the air at an angle of 30 degrees to the horizontal and with initial speed 25 ms^-1. Assuming negligible air resistance, how far from the starting point will the mass travel before it hits the ground?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning