Find the nature of the turning points of the graph given by the equation x^4 +(8/3)*x^3 -2x^2 -8x +177 (6 marks)

(1 mark) Differentiate equation in the question: 4x3+8x2-4x-8(1 mark) Equate this to zero: (x-1)(x+1)(x+2)=0(1 mark) Find turning points (roots of above equation): x=1,-1,-2(1 mark) Differentiate again: 12x2+16x-4(2 marks) Evaluate the twice differentiated equation at each turning point to determine their nature: x=1: minimum ; x=-1: maximum ; x=-2: minimum

EB
Answered by Elizabeth B. Maths tutor

3289 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Express 1/(1+2x)(1-x) in partial fractions


Given f(x) = 3 - 5x + x^3, how can I show that f(x) = 0 has a root (x=a) in the interval 1<a<2?


Find the derivative for y=5x^3-2x^2+7x-15


Simplify √32+√18 to a*√2 where a is an integer


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning