Find the nature of the turning points of the graph given by the equation x^4 +(8/3)*x^3 -2x^2 -8x +177 (6 marks)

(1 mark) Differentiate equation in the question: 4x3+8x2-4x-8(1 mark) Equate this to zero: (x-1)(x+1)(x+2)=0(1 mark) Find turning points (roots of above equation): x=1,-1,-2(1 mark) Differentiate again: 12x2+16x-4(2 marks) Evaluate the twice differentiated equation at each turning point to determine their nature: x=1: minimum ; x=-1: maximum ; x=-2: minimum

EB
Answered by Elizabeth B. Maths tutor

3420 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How would you find the minimum turning point of the function y = x^3 + 2x^2 - 4x + 10


A ball is released on a smooth ramp at a distance of 5 metres from the ground. Calculate its speed when it reaches the bottom of the ramp.


Evaluate the indefinite integral when the integrand function is tan(x).


What is differentiation


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning