Find the nature of the turning points of the graph given by the equation x^4 +(8/3)*x^3 -2x^2 -8x +177 (6 marks)

(1 mark) Differentiate equation in the question: 4x3+8x2-4x-8(1 mark) Equate this to zero: (x-1)(x+1)(x+2)=0(1 mark) Find turning points (roots of above equation): x=1,-1,-2(1 mark) Differentiate again: 12x2+16x-4(2 marks) Evaluate the twice differentiated equation at each turning point to determine their nature: x=1: minimum ; x=-1: maximum ; x=-2: minimum

EB
Answered by Elizabeth B. Maths tutor

3112 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Relative to a fixed origin O, the point A has position vector (8i+13j-2k), the point B has position vector (10i+14j-4k). A line l passes through points A and B. Find the vector equation of this line.


A curve C has equation: y = x^2 − 2x − 24x^1/2, x > 0; Find (i) dy/dx (ii) d^2y/dx^2


A particle P moves with acceleration (-3i + 12j) m/s^2. Initially the velocity of P is 4i m/s. (a) Find the velocity of P at time t seconds. (b) Find the speed of P when t = 0.5


Express 6cos(2x) + sin(x) in terms of sin(x), hence solve the equation 6cos(2x) + sin(x) = 0 for 0<x<360


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences