Show that the funtion (x-3)(x^2+3x+1) has two stationary points and give the co-ordinates of these points

Stationary points are points where the gradient of a function is equal to 0. In this question the product rule can be used to find the gradient of the given function. The product rule is given by u'v+uv'= (uv)' and so the differential in this question is (1)(x^2+3x+1)+(x-3)(2x+3). Setting this equal to 0 we can rearrange to get (x^2+3x+1)=-(x-3)(2x+3). We then expand the brackets on the right hand side of the equation. (x^2+3x+1)=-(2x^2-6x+3x-9) = (-2x^2+3x+9). Cancelling terms and reaaranging for x we can find the number of stationary points. 3x^2 = 8 -> x = (8/3)^1/2, as we know that a positive number always has two roots (one positive and one negative) we can see that there are two stationary points at +/- (8/3)^1/2. These x coordinates are then substituted into the original equation to give the y coordinate of the stationary point.

JR
Answered by Joe R. Maths tutor

3049 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

The line AB has equation 5x + 3y + 3 = 0. The point with coordinates (2k + 3, 4 -3k) lies on the line AB. How do you find the value of k.


Solve the following definite integral: f(x)=3e^(2x+1) for the limits a=0 and b=1, leaving your answer in exact form.


Find the volume of revolution when the curve defined by y=xe^(2x) is rotated 2*pi radians about the x-axis between x=0 and x=1


Why does the constant disappear when differentiating a function?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences