Please expand the brackets in the following equation to get a quadratic equation. Then, please show using the quadratic formula that the solutions to the equation are x=3 and x=5. Here is the starting equation: (x-3)(x-5)=0

(X-3)(x-5)=0Use F.O.I.LFirst x multiplied by x gives x2outer x multiplied by -5 gives -5xinner x multiplied by -3 gives -3xlast -5x-3 gives +15combining we get x2-8x+15=0the quadratic equation ax2+bx+c=0 has solutions (-b+-sqrt(b2-4ac))/2a, or (8+-sqrt(64-60))/2=(8+-2)/2=5 and 3.

JG
Answered by Jacob G. Maths tutor

3144 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Simplify the expression 5x + 6y -4x+ 7y


Express x*2 + 10x - 3 in the form (x+p)*2 + q


The equation of the line L1 is y = 3x – 2. The equation of the line L2 is 3y – 9x + 5 = 0. Show that these two lines are parallel.


Solve algebraically 6a + b = 16 and 5a - 2b = 19


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences