Solve the following simultaneous equations: 2y = 8x + 6 // x = 3y + 7

First we must try to write y as a function of x, in this case it means halving the first equation so that we find that y = 4x + 3. Once we have dicovereved this. We can now write the y in our second equation in terms of x as we just found. The second equation no would read: x = 3(4x+3) + 7 Now we expand the brackets to find that x = 12x + 9 + 7 or x = 12x + 16. This can be rearranged to the form -11x = 16 and from this we can solve for x. x = -16/11 We can then plug this into our first equation to find y.Giving us 2y = 8(-16/11) + 6 looking to find just y means we halve the whole ting to find that y = 4(-16/11) + 3 which gives us y = -31/ 11. We have now solved the whole thing giving us x = -16/11 and y = -31/11.

AH
Answered by Andrew H. Maths tutor

2999 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Find the lowest common multiple and highest common factor of 30 and 60.


Find the mid point of the line A B, where A is (8,-1) and B is (2,5).


Expand and simplify (-2x+3)(x-6)


Anna has 6 bananas. Ben has 2.5 times more bananas than Anna. Callum has a third as many bananas as Anna and Ben have together. How many bananas do Anna, Ben and Callum have together?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning