f(x) = (sin(x))^3. What is f'(x)

Write sin3(x) as sin2x*sinx and differentiate using product rule, u=sin2x, v=sinx, du/dx=2sinxcosx, dv/dx=cosx where the product rule is u(dv/dx) + v(du/dx). This gets 2sin2xcosx + sin2xcosx = 3sin2xcosx which is the correct answer

LR
Answered by Liam R. Maths tutor

3175 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Express 4sin(x)+6cos(x) in terms of Rsin(x+a) where R and a are constants to be determined (a should be given in rad).


Show that the derivative of tan(x) is sec^2(x), where sec(x) is defined as 1/cos(x). [Hint: think of tan(x) as a quotient of two related functions and apply the appropriate identity]


f(x) = (4x + 1)/(x - 2). Find f'(x)


find the integral between the limits 0 and pi/2 of sin(x)cos(x) with respect to x.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning